Содержание
- 1. Какую наименьшую сумму могут иметь девять последовательных натуральных чисел, если эта сумма оканчивается на 222324257
- 1.2. Какую наименьшую сумму могут иметь девять последовательных натуральных чисел, если эта сумма оканчивается на 24252627?
- 1.3. Какую наименьшую сумму могут иметь девять последовательных натуральных чисел, если эта сумма оканчивается на 29282726?
- 2. На доске написаны 73 натуральных числа. Аня и Ваня по очереди стирают с доски числа: сначала Аня стирает 11 чисел, затем Ваня стирает 10 чисел, после этого Аня стирает 9 чисел, за ней Ваня — 8 чисел и так далее. В конце Аня стирает 1 число. Аня хочет, чтобы все 7 оставшихся на доске чисел были чётными. Какое наименьшее количество чётных чисел должно быть изначально написано на доске, чтобы ей гарантированно удалось это сделать?
- 2.2. На доске написаны 96 натуральных числа. Аня и Ваня по очереди стирают с доски числа: сначала Аня стирает 13 чисел, затем Ваня стирает 12 чисел, после этого Аня стирает 11 чисел, за ней Ваня — 10 чисел и так далее. В конце Аня стирает 1 число. Аня хочет, чтобы все 5 оставшихся на доске чисел были чётными. Какое наименьшее количество чётных чисел должно быть изначально написано на доске, чтобы ей гарантированно удалось это сделать?
- 3. Уравнение (x^2 + 16x + b)(x^2 + 16x + b + 50) = 0имеет четыре корня, образующих арифметическую прогрессию. Каким может быть первый член этой прогрессии? Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.
- 3.2. Уравнение (x^2 + 13x + b)(x^2 + 13x + b — 32) = 0 имеет четыре корня, образующих арифметическую прогрессию. Каким может быть первый член этой прогрессии? Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.
- 4. Обозначим через P(x_1, x_2, …, x_n) сумму чисел, обратных всем возможным произведениям чисел из множества M = {x_1, x_2, …, x_n} (в произведение может входить и одно число). Например, P(3, 4, 6) = 1/3 + 1/4 + 1/6 + 1/12 + 1/18 + 1/24 + 1/72 = 68/72 = 17/18. Найдите P(1, 2, 3, …, 124, 125).
- 4.2. Обозначим через P(x_1, x_2, …, x_n) сумму чисел, обратных всем возможным произведениям чисел из множества M = {x_1, x_2, …, x_n} (в произведение может входить и одно число). Например, P(3, 4, 6) = 1/3 + 1/4 + 1/6 + 1/12 + 1/18 + 1/24 + 1/72 = 68/72 = 17/18. Найдите P(1, 2, 3, …, 424, 425).
- 4.3. Обозначим через P(x_1, x_2, …, x_n) сумму чисел, обратных всем возможным произведениям чисел из множества M = {x_1, x_2, …, x_n} (в произведение может входить и одно число). Например, P(3, 4, 6) = 1/3 + 1/4 + 1/6 + 1/12 + 1/18 + 1/24 + 1/72 = 68/72 = 17/18. Найдите P(1, 2, 3, …, 224, 225).
- 5. В пространстве даны замкнутая 13-звенная ломаная A_1A_2…A_13A_1,каждое звено которой имеет длину 2, и точка S, такая, что каждый из треугольников SA_1A_2, SA_2A_3…SA_12A_13, SA_13A_1 — невырожденный, имеет целочисленные стороны, а у одного из них есть сторона длины 6. Для каждого из этих треугольников вычислили его периметр. Какое наибольшее значение периметра могло получиться?
- 5.2. В пространстве даны замкнутая 11-звенная ломаная A_1A_2…A_11A_1, каждое звено которой имеет длину 2, и точка S, такая, что каждый из треугольников SA_1A_2, SA_2A_3…SA_10A_11, SA_11A_1 — невырожденный, имеет целочисленные стороны, а у одного из них есть сторона длины 5. Для каждого из этих треугольников вычислили его периметр. Какое наибольшее значение периметра могло получиться?
- 5.3. В пространстве даны замкнутая 15-звенная ломаная A_1A_2…A_15A_1, каждое звено которой имеет длину 2, и точка S, такая, что каждый из треугольников SA_1A_2, SA_2A_3…, SA_14A_15, SA_15A_1 — невырожденный, имеет целочисленные стороны, а у одного из них есть сторона длины 7. Для каждого из этих треугольников вычислили его периметр. Какое наибольшее значение периметра могло получиться?
- 6. По кольцевой трассе в одном направлении из разных точек трассы ровно в 08:00 стартовали три велосипедиста. Первый из них проезжает всю трассу за 3 минуты, второй — за 5 минут, третий — за 7 минут. Через полторы минуты все трое оказались в одной точке трассы. В какое время велосипедисты во второй раз окажутся в одной точке трассы, если их скорости постоянны? Ответ запишите в 24-часовом формате ЧЧ:ММ.
- 6.2. По кольцевой трассе в одном направлении из разных точек трассы ровно в 08:00 стартовали три велосипедиста. Первый из них проезжает всю трассу за 3 минуты, второй — за 5 минут, третий — за 7 минут. Через две с половиной минуты все трое оказались в одной точке трассы. В какое время велосипедисты во второй раз окажутся в одной точке трассы, если их скорости постоянны? Ответ запишите в 24-часовом формате ЧЧ:ММ.
- 6.3. По кольцевой трассе в одном направлении из разных точек трассы ровно в 08:00 стартовали три велосипедиста. Первый из них проезжает всю трассу за 5 минут, второй — за 7 минут, третий — за 9 минут. Через полторы минуты все трое оказались в одной точке трассы. В какое время велосипедисты во второй раз окажутся в одной точке трассы, если их скорости постоянны? Ответ запишите в 24-часовом формате ЧЧ:ММ.
- 6.4. По кольцевой трассе в одном направлении из разных точек трассы ровно в 08:00 стартовали три велосипедиста. Первый из них проезжает всю трассу за 7 минут, второй — за 9 минут, третий — за 11 минут. Через полторы минуты все трое оказались в одной точке трассы. В какое время велосипедисты во второй раз окажутся в одной точке трассы, если их скорости постоянны? Ответ запишите в 24-часовом формате ЧЧ:ММ.
- 7. Даны две параллельные прямые b и c и точка A, не лежащая между ними.Луч, выходящий из точки A перпендикулярно этим прямым, пересекает прямую b в точке P, а прямую c — в точке Q. Известно, что AP = 6, AQ = 20. Сколькими способами можно выбрать на прямой b точку B, а на прямой c — точку C так, чтобы отрезки BP и CQ имели целую длину, а угол ACB был прямым?
- 7.2. Даны две параллельные прямые b и c и точка A, не лежащая между ними. Луч, выходящий из точки A перпендикулярно этим прямым, пересекает прямую b в точке P, а прямую c — в точке Q. Известно, что AP = 4, AQ = 18. Сколькими способами можно выбрать на прямой b точку B, а на прямой c — точку C так, чтобы отрезки BP и CQ имели целую длину, а угол ACB был прямым?
- 7.3. Даны две параллельные прямые b и c и точка A, не лежащая между ними. Луч, выходящий из точки A перпендикулярно этим прямым, пересекает прямую b в точке P, а прямую c — в точке Q. Известно, что AP = 16, AQ = 25. Сколькими способами можно выбрать на прямой b точку B, а на прямой c — точку C так, чтобы отрезки BP и CQ имели целую длину, а угол ACB был прямым?
- 8. В клетках доски 32 × 92 стоят рыцари и лжецы — по одному человеку в каждой клетке.Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый из них заявил, что одним из его соседей является лжец. Соседями считаются люди, клетки которых граничат по стороне или по вершине. Какое наибольшее число рыцарей может стоять на доске?
- 8.2. В клетках доски 32 × 92 стоят рыцари и лжецы — по одному человеку в каждой клетке. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый из них заявил, что одним из его соседей является лжец. Соседями считаются люди, клетки которых граничат по стороне или по вершине. Какое наибольшее число рыцарей может стоять на доске?
- 8.3. В клетках доски 47 × 92 стоят рыцари и лжецы — по одному человеку в каждой клетке. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый из них заявил, что одним из его соседей является лжец. Соседями считаются люди, клетки которых граничат по стороне или по вершине. Какое наибольшее число рыцарей может стоять на доске?
- 8.4. В клетках доски 47 × 32 стоят рыцари и лжецы — по одному человеку в каждой клетке. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый из них заявил, что одним из его соседей является лжец. Соседями считаются люди, клетки которых граничат по стороне или по вершине. Какое наибольшее число рыцарей может стоять на доске?
1. Какую наименьшую сумму могут иметь девять последовательных натуральных чисел, если эта сумма оканчивается на 222324257
Ответ: 222324282
1.2. Какую наименьшую сумму могут иметь девять последовательных натуральных чисел, если эта сумма оканчивается на 24252627?
Ответ: 624252627
1.3. Какую наименьшую сумму могут иметь девять последовательных натуральных чисел, если эта сумма оканчивается на 29282726?
Ответ: 833333526
2. На доске написаны 73 натуральных числа. Аня и Ваня по очереди стирают с доски числа: сначала Аня стирает 11 чисел, затем Ваня стирает 10 чисел, после этого Аня стирает 9 чисел, за ней Ваня — 8 чисел и так далее. В конце Аня стирает 1 число. Аня хочет, чтобы все 7 оставшихся на доске чисел были чётными. Какое наименьшее количество чётных чисел должно быть изначально написано на доске, чтобы ей гарантированно удалось это сделать?
Ответ: 14
2.2. На доске написаны 96 натуральных числа. Аня и Ваня по очереди стирают с доски числа: сначала Аня стирает 13 чисел, затем Ваня стирает 12 чисел, после этого Аня стирает 11 чисел, за ней Ваня — 10 чисел и так далее. В конце Аня стирает 1 число. Аня хочет, чтобы все 5 оставшихся на доске чисел были чётными. Какое наименьшее количество чётных чисел должно быть изначально написано на доске, чтобы ей гарантированно удалось это сделать?
Ответ: 59
3. Уравнение (x^2 + 16x + b)(x^2 + 16x + b + 50) = 0 имеет четыре корня, образующих арифметическую прогрессию. Каким может быть первый член этой прогрессии? Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.
Ответ: — 25 — 21
3.2. Уравнение (x^2 + 13x + b)(x^2 + 13x + b — 32) = 0 имеет четыре корня, образующих арифметическую прогрессию. Каким может быть первый член этой прогрессии? Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.
Ответ: -12,5
4. Обозначим через P(x_1, x_2, …, x_n) сумму чисел, обратных всем возможным произведениям чисел из множества M = {x_1, x_2, …, x_n} (в произведение может входить и одно число). Например, P(3, 4, 6) = 1/3 + 1/4 + 1/6 + 1/12 + 1/18 + 1/24 + 1/72 = 68/72 = 17/18. Найдите P(1, 2, 3, …, 124, 125).
Ответ: 125
4.2. Обозначим через P(x_1, x_2, …, x_n) сумму чисел, обратных всем возможным произведениям чисел из множества M = {x_1, x_2, …, x_n} (в произведение может входить и одно число). Например, P(3, 4, 6) = 1/3 + 1/4 + 1/6 + 1/12 + 1/18 + 1/24 + 1/72 = 68/72 = 17/18. Найдите P(1, 2, 3, …, 424, 425).
Ответ: 425
4.3. Обозначим через P(x_1, x_2, …, x_n) сумму чисел, обратных всем возможным произведениям чисел из множества M = {x_1, x_2, …, x_n} (в произведение может входить и одно число). Например, P(3, 4, 6) = 1/3 + 1/4 + 1/6 + 1/12 + 1/18 + 1/24 + 1/72 = 68/72 = 17/18. Найдите P(1, 2, 3, …, 224, 225).
Ответ: 225
5. В пространстве даны замкнутая 13-звенная ломаная A_1A_2…A_13A_1, каждое звено которой имеет длину 2, и точка S, такая, что каждый из треугольников SA_1A_2, SA_2A_3…SA_12A_13, SA_13A_1 — невырожденный, имеет целочисленные стороны, а у одного из них есть сторона длины 6. Для каждого из этих треугольников вычислили его периметр. Какое наибольшее значение периметра могло получиться?
Ответ: 15
5.2. В пространстве даны замкнутая 11-звенная ломаная A_1A_2…A_11A_1, каждое звено которой имеет длину 2, и точка S, такая, что каждый из треугольников SA_1A_2, SA_2A_3…SA_10A_11, SA_11A_1 — невырожденный, имеет целочисленные стороны, а у одного из них есть сторона длины 5. Для каждого из этих треугольников вычислили его периметр. Какое наибольшее значение периметра могло получиться?
Ответ: 13
5.3. В пространстве даны замкнутая 15-звенная ломаная A_1A_2…A_15A_1, каждое звено которой имеет длину 2, и точка S, такая, что каждый из треугольников SA_1A_2, SA_2A_3…, SA_14A_15, SA_15A_1 — невырожденный, имеет целочисленные стороны, а у одного из них есть сторона длины 7. Для каждого из этих треугольников вычислили его периметр. Какое наибольшее значение периметра могло получиться?
Ответ: 17
6. По кольцевой трассе в одном направлении из разных точек трассы ровно в 08:00 стартовали три велосипедиста. Первый из них проезжает всю трассу за 3 минуты, второй — за 5 минут, третий — за 7 минут. Через полторы минуты все трое оказались в одной точке трассы. В какое время велосипедисты во второй раз окажутся в одной точке трассы, если их скорости постоянны? Ответ запишите в 24-часовом формате ЧЧ:ММ.
Ответ: 08:54
6.2. По кольцевой трассе в одном направлении из разных точек трассы ровно в 08:00 стартовали три велосипедиста. Первый из них проезжает всю трассу за 3 минуты, второй — за 5 минут, третий — за 7 минут. Через две с половиной минуты все трое оказались в одной точке трассы. В какое время велосипедисты во второй раз окажутся в одной точке трассы, если их скорости постоянны? Ответ запишите в 24-часовом формате ЧЧ:ММ.
Ответ: 08:55
6.3. По кольцевой трассе в одном направлении из разных точек трассы ровно в 08:00 стартовали три велосипедиста. Первый из них проезжает всю трассу за 5 минут, второй — за 7 минут, третий — за 9 минут. Через полторы минуты все трое оказались в одной точке трассы. В какое время велосипедисты во второй раз окажутся в одной точке трассы, если их скорости постоянны? Ответ запишите в 24-часовом формате ЧЧ:ММ.
Ответ: 10:39
6.4. По кольцевой трассе в одном направлении из разных точек трассы ровно в 08:00 стартовали три велосипедиста. Первый из них проезжает всю трассу за 7 минут, второй — за 9 минут, третий — за 11 минут. Через полторы минуты все трое оказались в одной точке трассы. В какое время велосипедисты во второй раз окажутся в одной точке трассы, если их скорости постоянны? Ответ запишите в 24-часовом формате ЧЧ:ММ.
Ответ: 13:48
7. Даны две параллельные прямые b и c и точка A, не лежащая между ними. Луч, выходящий из точки A перпендикулярно этим прямым, пересекает прямую b в точке P, а прямую c — в точке Q. Известно, что AP = 6, AQ = 20. Сколькими способами можно выбрать на прямой b точку B, а на прямой c — точку C так, чтобы отрезки BP и CQ имели целую длину, а угол ACB был прямым?
Ответ: 32 способа
7.2. Даны две параллельные прямые b и c и точка A, не лежащая между ними. Луч, выходящий из точки A перпендикулярно этим прямым, пересекает прямую b в точке P, а прямую c — в точке Q. Известно, что AP = 4, AQ = 18. Сколькими способами можно выбрать на прямой b точку B, а на прямой c — точку C так, чтобы отрезки BP и CQ имели целую длину, а угол ACB был прямым?
Ответ: 36 способов
7.3. Даны две параллельные прямые b и c и точка A, не лежащая между ними. Луч, выходящий из точки A перпендикулярно этим прямым, пересекает прямую b в точке P, а прямую c — в точке Q. Известно, что AP = 16, AQ = 25. Сколькими способами можно выбрать на прямой b точку B, а на прямой c — точку C так, чтобы отрезки BP и CQ имели целую длину, а угол ACB был прямым?
Ответ: 18 способов
8. В клетках доски 32 × 92 стоят рыцари и лжецы — по одному человеку в каждой клетке. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый из них заявил, что одним из его соседей является лжец. Соседями считаются люди, клетки которых граничат по стороне или по вершине. Какое наибольшее число рыцарей может стоять на доске?
Ответ: 1472
8.2. В клетках доски 32 × 92 стоят рыцари и лжецы — по одному человеку в каждой клетке. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый из них заявил, что одним из его соседей является лжец. Соседями считаются люди, клетки которых граничат по стороне или по вершине. Какое наибольшее число рыцарей может стоять на доске?
Ответ: 1472
8.3. В клетках доски 47 × 92 стоят рыцари и лжецы — по одному человеку в каждой клетке. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый из них заявил, что одним из его соседей является лжец. Соседями считаются люди, клетки которых граничат по стороне или по вершине. Какое наибольшее число рыцарей может стоять на доске?
Ответ: 2162
8.4. В клетках доски 47 × 32 стоят рыцари и лжецы — по одному человеку в каждой клетке. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждый из них заявил, что одним из его соседей является лжец. Соседями считаются люди, клетки которых граничат по стороне или по вершине. Какое наибольшее число рыцарей может стоять на доске?
Ответ: 752
